

24th September, 2018

Barcelona Supercomputing Center Centro Nacional de Supercomputación

A Machine Learning approach for parameter screening in Earthquake simulation.

José Carlos Carrasco-Jiménez, Ph.D.

High Performance Machine Learning Workshop 2018

Introduction

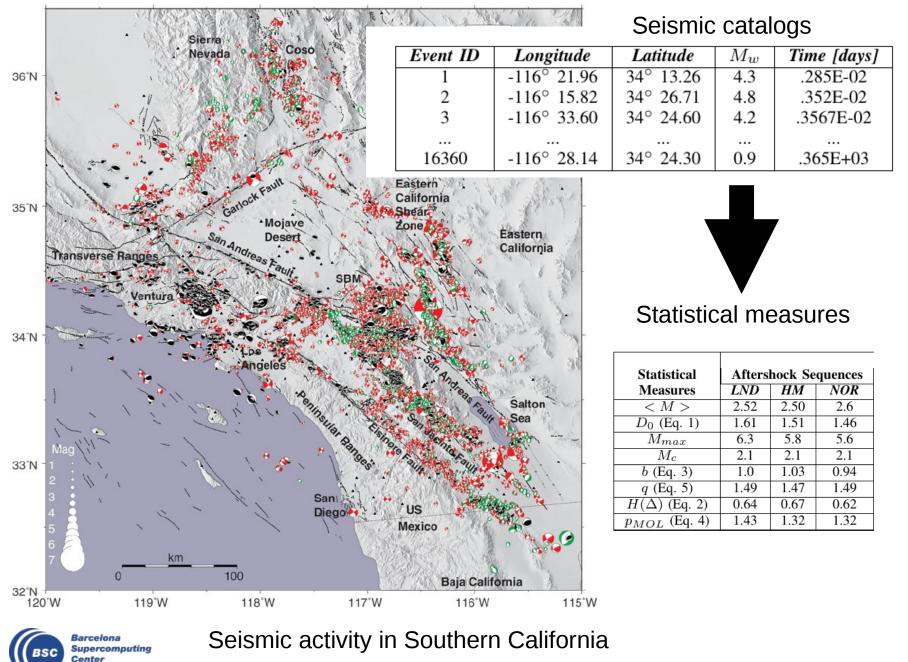
EARTHQUAKES Natural hazard

Earthquakes are the result of rupture in the Earth's Crust.

Aftershocks are defined as sequence of earthquakes with lower magnitude than the mainshock that triggered them.

Nepal 2015, Mw = 8.1

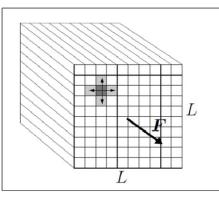
Our observational span is still too short to be able to draw strong (predictive) conclusions about when, where, and how big the next earthquake will be.



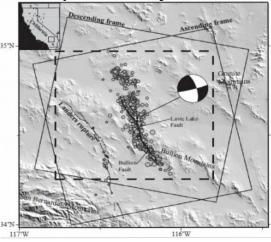
Centro Nacional de Supercomputación

FIBER BUNDLE MODEL

- numerical simulations
- discrete element model developed to study the rupture process in heterogeneous materials (e.g. textiles, composites, Earth's crust, etc.)

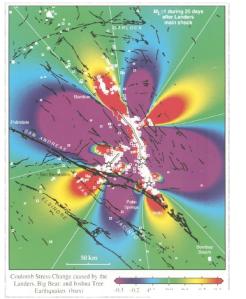


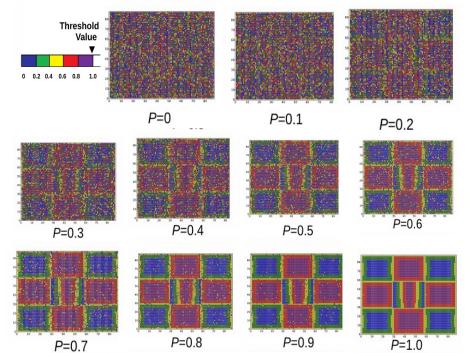
- describes the interactions of individual cells
- transfer load rules
- initial load probability distribution function

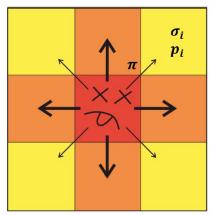


ability to model aftershocks
aftershocks located around the active faults

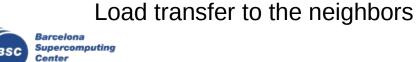
captures spatio-temporal distribution of seismic events







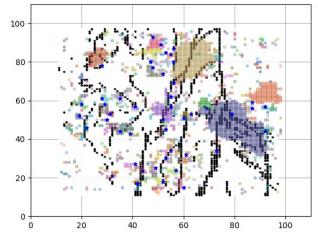
Input parameters: P: initial organization probability π: transfer value N: lateral grid size



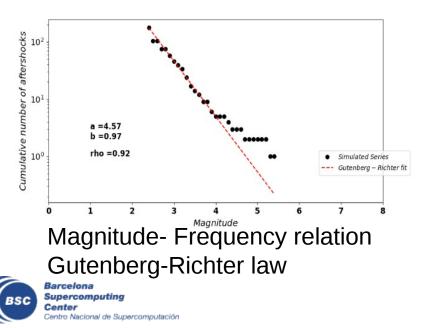
Centro Nacional de Supercomputación

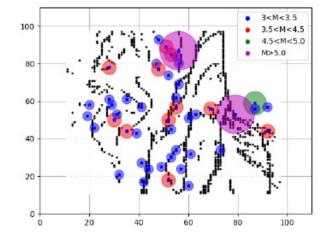
AFTERSHOCKS: Statistical patterns

Modeling spatial distribution around faults and its magnitude

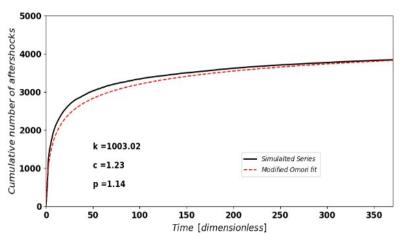


Raw spatial distribution





Magnitude spatial representation



Omori-Utsu law: Describes in a power law the aftershock time behavior

Objective

To estimate the FBM parameters that better reproduce real seismic characteristics.

Methodology

REAL DATA

Three aftershocks that occurred in Southern California:

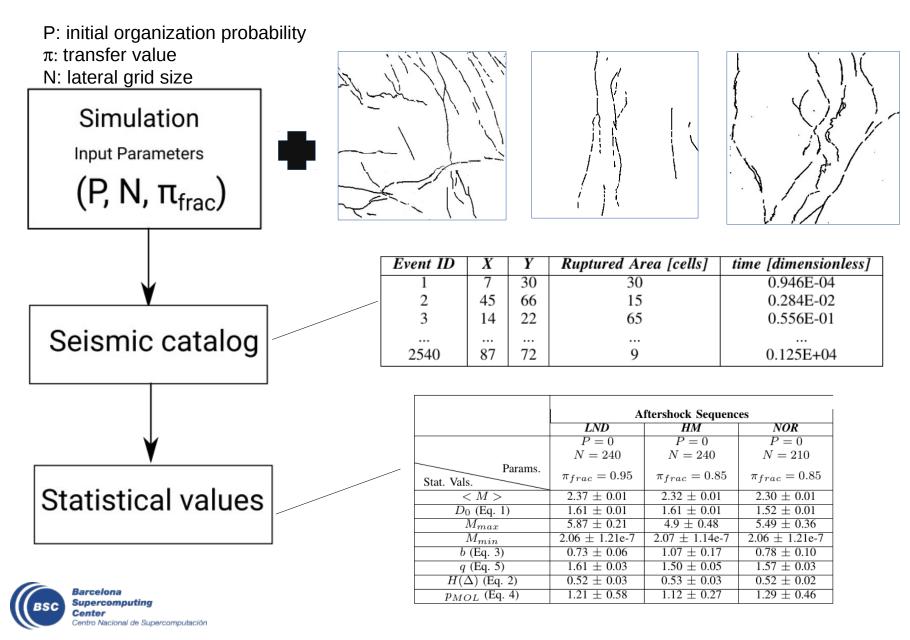
Landers (LND) – 1992, M = 7.3, # of seismic events = 30547
 Northridge (NOR) – 1994, M = 6.7, # of seismic events = 11252
 Hector Mine (HM) – 1999, M = 7.1, # of seismic events = 16360

Statistical	Aftershock Sequences		
Measures	LND	HM	NOR
< M >	2.52	2.50	2.6
D_0 (Eq. 1)	1.61	1.51	1.46
M_{max}	6.3	5.8	5.6
M_c	2.1	2.1	2.1
b (Eq. 3)	1.0	1.03	0.94
q (Eq. 5)	1.49	1.47	1.49
$H(\Delta)$ (Eq. 2)	0.64	0.67	0.62
p_{MOL} (Eq. 4)	1.43	1.32	1.32

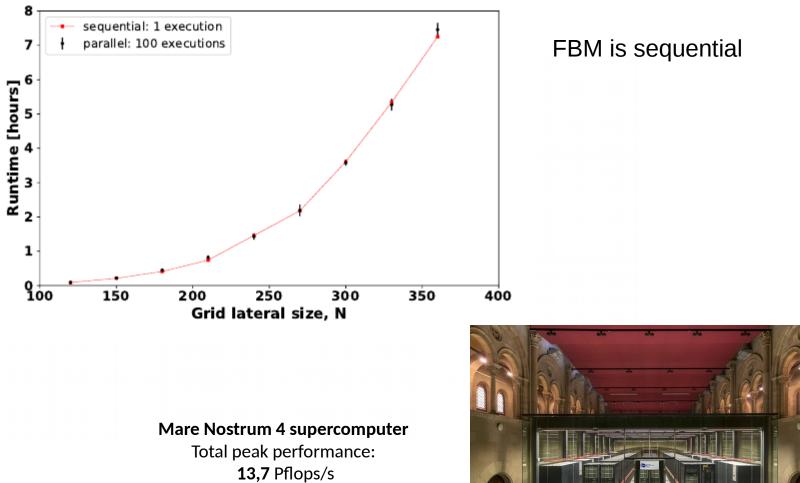
TABLE III

STATISTICAL MEASURES FOR THE REAL AFTERSHOCK SEQUENCES.

SYNTHETIC DATA



High Performance Computing



Machine Learning

- Support Vector Machines (SVM) with radial basis kernel and sigmoid kernel

- Flexible Discriminant Analysis (FDA)
- Random Forest (RF)

Data: feature set Result: average performance initialization; while i = 1 to 50 do | # Apply cross validation; performance = CrossValidation(sampled, classifier, k=5); end # return the average performance; avg-performance;

Experimental Setting

1



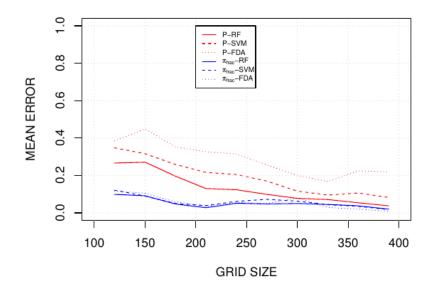
NOR

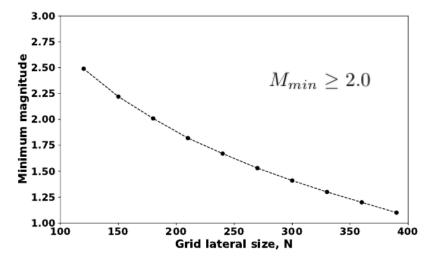
2) Parameters

 $\begin{aligned} \mathsf{P} &= [0.0, \, 0.08, \, 0.16, \, 0.24] \\ \pi &= [0.65, \, 0.75, \, 0.85, \, 0.9, \, 0.95] \\ \mathsf{N} &= [120, 150, 180, 210, 240, 270, 300, 330, 360, 390] \end{aligned}$

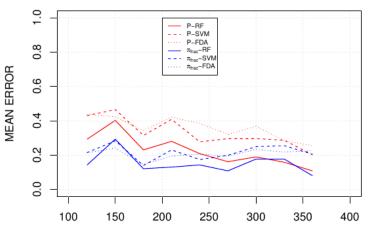
Results

Experiment 1: Grid size and minimum magnitude





Larger N satisfies smaller minimum magnitudes, but larger grid size requires more computational hours to execute the simulation



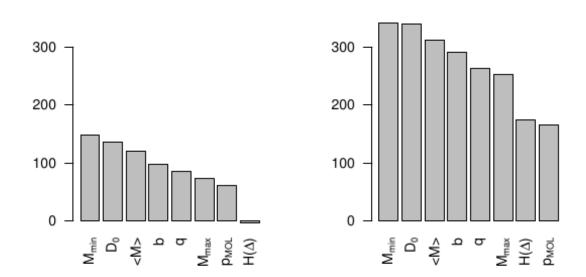
CLASSIFICATION CRITERIA

P: initial organization probability π : transfer value

GRID SIZE

Experiment 2: Selecting most important aftershock statistical values.

Mean Decrease Accuracy



Mean Decrease Gini

Magnitude Features: M_{min} , < M >, b, q Fractal Dimension: D_0

Experiment 3: Estimating optimal FBM parameters

- Used important features
- Trained with synthetic sequences
- Classification label (P , $\pi_{_{frac}}$, and N)

	Aftershock Sequences			
	LND	HM	NOR	
	P = 0	P = 0	P = 0	
	N = 240	N = 240	N = 210	
Params. Stat. Vals.	$\pi_{frac} = 0.95$	$\pi_{frac} = 0.85$	$\pi_{frac} = 0.85$	
< M >	2.37 ± 0.01	2.32 ± 0.01	2.30 ± 0.01	
D_0 (Eq. 1)	1.61 ± 0.01	1.61 ± 0.01	1.52 ± 0.01	
M _{max}	5.87 ± 0.21	4.9 ± 0.48	5.49 ± 0.36	
M_{min}	$2.06 \pm 1.21e-7$	$2.07 \pm 1.14e-7$	$2.06 \pm 1.21e-7$	
b (Eq. 3)	0.73 ± 0.06	1.07 ± 0.17	0.78 ± 0.10	
q (Eq. 5)	1.61 ± 0.03	1.50 ± 0.05	1.57 ± 0.03	
$H(\Delta)$ (Eq. 2)	0.52 ± 0.03	0.53 ± 0.03	0.52 ± 0.02	
p_{MOL} (Eq. 4)	1.21 ± 0.58	1.12 ± 0.27	1.29 ± 0.46	

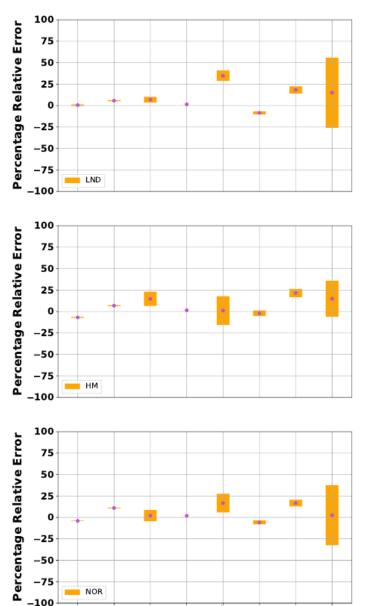
Statistical	Aftershock Sequences			
Measures	LND	HM	NOR	
< M >	2.52	2.50	2.6	
D_0 (Eq. 1)	1.61	1.51	1.46	
M_{max}	6.3	5.8	5.6	
M_c	2.1	2.1	2.1	
b (Eq. 3)	1.0	1.03	0.94	
q (Eq. 5)	1.49	1.47	1.49	
$H(\Delta)$ (Eq. 2)	0.64	0.67	0.62	
p_{MOL} (Eq. 4)	1.43	1.32	1.32	

N > 210

Sufficiently large

TABLE III

STATISTICAL MEASURES FOR THE REAL AFTERSHOCK SEQUENCES.



< M >

D₀

Mmax

Mmin

Parameters

 $H(\Delta)$

q

PMOL

Conclusions and future work

CONCLUSIONS

- ML is an efficient tool for parameter screening
- ML is a useful tool to study the properties of the FBM model.
- HPC and ML enables us to model highly realistic series of aftershocks, indistinguishable from real ones by the standard seismological measures
- opens the possibility of producing longer and most complex studies involving decades of observations and larger study areas

FUTURE WORK

- increase number of real aftershock sequences with the aim of generalizing our methodology.
- Artificial Neural Networks will be tested and compared to the algorithms used in the present work.
- use partially learned ML models to drive parameter exploration of simulation runs in order to reduce the number of simulations needed to approximate a mapping between FBM parameters and earthquake statistics.
- development of a software package that contains not only the simulator but also the optimal parameter screening

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you

TT E

