t-SNE-CUDA: GPU Accelerated t-SNE and its Applications to Modern Data

David Chan*, Roshan Rao*, Forrest Huang** and John F. Canny
University of California, Berkeley

* Presenter
** Equal contribution
Talk Outline

● The Problem
● t-SNE Overview
● Contributions
● Results
● Applications and Future Work
The Problem
Modern machine learning datasets are massive, and high-dimensional.

- **ImageNet**
 (> 1M Images)

- **GLoVE Vectors**
 (> 2.2M Words, 300-dimensions)
The Problem

How do we obtain a structural understanding of these datasets?

ImageNet
(> 1M Images)

GLoVE Vectors
(> 2.2M Words, 300-dimensions)
t-SNE Overview
(T-Distributed Stochastic Neighbor Embedding)
t-SNE Overview

- Dimension Reduction: We’re given a set of elements $X_1...X_N$ in a high dimensional space, and we want to visualize them in a lower dimension as $Y_1...Y_N$

- t-SNE attempts to preserve between-point distances (as opposed to PCA, which preserves variance), leading to informative local structure
t-SNE Overview

- Measure the similarity between points as a probability distribution
- Model the probability that X_i selects X_j as a neighbor from the larger set of points by using a gaussian centered at the point in high-dimensional space.

$$p_{j|i} = \frac{\exp(-d(x_i, x_j)^2 / 2\sigma_i^2)}{\sum_{i \neq k} \exp(-d(x_i, x_k)^2 / 2\sigma_i^2)}$$
t-SNE Overview

- We map this distribution in the lower dimensional space on Y.
- t-Distribution in the lower dimensional space to avoid overcrowding problem with a heavier tail:

\[q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}} \]

Source: Columbia PreMBA
t-SNE Overview

- Higher dimensional space:

\[p_{j|i} = \frac{\exp(-d(x_i, x_j)^2/2\sigma_i^2)}{\sum_{i \neq k} \exp(-d(x_i, x_k)^2/2\sigma_i^2)} \]
t-SNE Overview

- Higher dimensional space:

\[p_{j|i} = \frac{\exp\left(-d(x_i, x_j)^2/2\sigma_i^2\right)}{\sum_{i \neq k} \exp\left(-d(x_i, x_k)^2/2\sigma_i^2\right)}, \quad p_{ij} = \frac{p_{j|i} + p_{i|j}}{2} \]
t-SNE Overview

- Higher dimensional space:

\[p_{j|i} = \frac{\exp(-d(x_i, x_j)^2/2\sigma_i^2)}{\sum_{i \neq k} \exp(-d(x_i, x_k)^2/2\sigma_i^2)}, \quad p_{ij} = \frac{p_{j|i} + p_{i|j}}{2} \]

- Lower dimensional space:

\[q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}} \]
t-SNE Overview

- High dimensional:
 \[p_{j|i} = \frac{\exp\left(-d(x_i, x_j)^2 / 2\sigma_i^2\right)}{\sum_{i \neq k} \exp\left(-d(x_i, x_k)^2 / 2\sigma_i^2\right)} \]
 \[p_{ij} = p_{j|i} + p_{i|j} \]

- Low dimensional:
 \[q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}} \]

- Minimize KL Divergence:
 \[y^* = \arg \min_{y} KL(P||Q) = \arg \min_{y} \sum_{i,j,i \neq j} p_{ij} \log \frac{q_{ij}}{p_{ij}} \]
Implementation - Algorithm

- KL Divergence:
 \[
 y^* = \arg\min_y KL(P \| Q) = \arg\min_y \sum_{i,j, i\neq j} p_{ij} \log \frac{q_{ij}}{p_{ij}}
 \]

- Minimize:
 \[
 C = KL(P \| Q)
 \]
 \[
 \frac{\partial C}{\partial y_i} = 4 \sum_j (p_{ij} - q_{ij}) q_{ij} (y_i - y_j) Z
 \]
 \[
 Z = \sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}
 \]
Implementation - Algorithm

- KL Divergence:

\[y^* = \arg\min_y KL(P||Q) = \arg\min_y \sum_{i,j,i\neq j} p_{ij} \log \frac{q_{ij}}{p_{ij}} \]

- Rewrite the gradient:

\[\frac{\partial C}{\partial y_i} = F_{attr} + F_{rep} \]
Implementation - Algorithm

- **KL Divergence:**
 \[
 y^* = \arg\min_y KL(P||Q) = \arg\min_y \sum_{i,j,i\neq j} p_{ij} \log \frac{q_{ij}}{p_{ij}}
 \]

- **Rewrite the gradient:**
 \[
 \frac{\partial C}{\partial y_i} = F_{attr} + F_{rep}
 \]

- **Turn it into an N-body physics simulation, we can use Barnes-Hut method for efficient computation.**
Existing t-SNE implementations are slow: ImageNet would take more than a week to compute.
Contributions/Solution
Solution - GPU Implementation

- GPU computation of t-SNE breaks down into several steps:
 - Computation of P_{ij}
 - Product between P_{ij} and Q_{ij}
 - Attractive forces
 - Building tree for Barnes-Hut Method for repulsive forces
 - Traversing tree for repulsive forces
 - Applying forces to the points in lower dimensional space

- We implement each of these kernels on the GPU
- Additionally, we add several other optimizations to further speed up the result
- We also provide python bindings for ease of use
Solution - Pij Construction

\[F_{attr} = \sum_{j \in [1, \ldots, N], j \neq i} p_{ij} q_{ij} Z(y_i - y_j) \]

- Usually, \(p_{ij} \) estimated by only computing k-nearest neighbours (k-NN) of each point (typically 32 points)
- Improve with *approximate* k-NN using Product Quantization
- Use FAISS library
 - Entirely on GPU
 - Can handle millions of points
Solution - Attractive Forces

- cuSPARSE sparse matrix computation:
 \[F_{\text{attr}} = 4N((P_{ij} \odot Q_{ij})O \odot Y - (P_{ij} \odot Q_{ij})Y) \]

- O(kN) time with 5 operations; k = constant number of neighbours
 - 2 Hadamard Products,
 - 2 Matrix-Matrix Multiplications
 - 1 Matrix-Matrix Subtraction

- \(P_{ij} \) is a sparse matrix with O(kN) elements, so result can be computed efficiently with optimized cuSPARSE calls

- \(P_{ij} \) is fixed over duration of optimization, only \(Q_{ij}, Y \) change
Solution - Repulsive Forces

\[F_{\text{rep}} = -\sum_{j \in [1, \ldots, N], j \neq i} q_{ij}^2 Z(y_i - y_j) \]

Requires repeated computation of \(q_{ij} \) at each iteration

- Barnes-Hut quad-tree construction and traversal done in parallel on GPU
 - \(O(N \log N) \) time
Results
Results - Datasets

Simulated Data with 50-dimensional points sampled from 4 isotropic high-dimensional Gaussian distributions

MNIST consisting of 70,000 28x28 images of handwritten digits constituting a 784 dimensional image space

CIFAR-10/100 datasets both consist of a 60,000 full-color images of 10 classes in 32x32x3 resolution, giving a 3072 dimensional data space
Results - Simulated Data

![Graph showing the performance of different methods with varying number of points.]
Results - Simulated Data
Results - Simulated Data

The graph shows the relationship between the number of points (in thousands) and the time taken to process the data, measured in seconds. The y-axis represents time in seconds, ranging from 1 to 1,000,000. The x-axis represents the number of points, ranging from 1 to 10,000.

The graph includes several lines, each representing a different method:
- **SkLearn**
- **MULTICORE-1**
- **MULTICORE-4**
- **BH-TSNE**
- **t-SNE-CUDA (Ours)**

The lines indicate how each method scales as the number of points increases. The graph also highlights the time limits of 1 hour and 1 day, showing how each method meets or exceeds these limits.

The results suggest that **t-SNE-CUDA** (Ours) is the most efficient method, capable of handling larger datasets within shorter time frames compared to the other methods.
Results - MNIST

Running Time (seconds)

Visualization Results

72x - 650x Speedup
Results - CIFAR

Running Time (seconds)

Visualization Results

52x - 700x Speedup
Results - Kernel Performance

500,000 points

5,000,000 points

cuSPARSE call dominate for large number of points
Results - Kernel Performance

- Floating-point focused kernel achieves 68.23% peak throughput, close to GPU roof-line
- Many computations are not floating-point arithmetics that GPUs are optimized for:
 - Many Kernels are memory/offset computations and transforms
 - Sparse Multiplication spends large amount of time to compute offsets for the different indices
- Kernels bounded by memory operations
Applications and Future Work
Applications - CIFAR-10 - Raw Pixels

- Raw pixel space doesn’t exhibit structure
- Demonstrates the difficulty of classifying object classes in CIFAR-10 compared to MNIST:
Applications - CIFAR-10 - LeNet Code

- Raw pixel space doesn’t exhibit structure
- Easier to classify object classes in CIFAR-10 in the LeNet code space, which demonstrates the effectiveness of Convolutional Neural Networks
Applications - ImageNet Codes

- ResNet-200 demonstrates a more continuous space for latent codes
- Suggests a more continuous classification space with ResNet-200 than VGG-19

ResNet-200 Codes (486 s) VGG-19 Codes (523 s)
Applications - GLoVe Vectors

- Hamming Distances play a significant role in the clusters. (i.e. clusters are frequently textually similar data, e.g. french words, dates)
- L2 metric could be questionable choice for comparing GLoVe vectors for certain instances.

GLoVE Vectors
(2.2M Words, 300-dimensions, 573.2s)
Future Work

● Support multi-GPU (most requested feature on GitHub)
● Explore Fast Multipole Method/Fourier Methods to compute repulsive forces
● Explore improvements to the sparse matrix multiplication for computing attractive forces
● Explore interactive visualization for training machine learning models
Questions?
https://github.com/CannyLab/tsne-cuda