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Modern machine learning datasets are
massive, and high-dimensional
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The Problem

IMJAGENET cHALLENGE 2017

Identify and label objects in images and videos.

Source: ImageNet

ImageNet

(> TM Images)

How do we obtain a structural understanding

of these datasets?
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t-SNE Overview

(T-Distributed Stochastic Neighbor Embedding)



t-SNE Overview

e Dimension Reduction: We're given a set
of elements X....X{, in a high
dimensional space, and we want to
visualize them in a lower dimension as
Y...Yy

Source: MNIST

e t-SNE attempts to preserve
between-point distances (as opposed to
PCA, which preserves variance), leading
to informative local structure
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t-SNE Overview

High Dimension P, Low Dimension Q, e Measure the similarity between
° 2 points as a probability
® o ' @ distribution
> | e Model the probability that X.
i ® selects Xj as a neighbor from the
® larger set of points by using a

gaussian centered at the point in
high-dimensional space.

- exp(=d(xi,2;)/207)
Pile = >izr exp(—d(zi, zx)? /207)
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t-SNE Overview

High Dimension P, Low Dimension Q; e We map this distribution in the
° 2 lower dimensional space on Y.
® o ' ® e t-Distribution in the lower
> | dimensional space to avoid
i ® overcrowding problem with a
® heavier tail:

Z distribution

(standard normal)

Source: Columbia PreMBA

t ~distribution
(n=12)

O+ ly =yl
> k(L + |y —wil[?)

q; 4
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t-SNE Overview

e Higher dimensional space:
o (i, a5)?/207)
Yk oxp(—d(ws, 1) /207)

HPML @ SPAC-PAD 2018



t-SNE Overview

e Higher dimensional space:
- exp(—d(z;, ;)% /207) p, — Pili TPy
1 Y exp(—d(wi, 1)2/207) 2
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t-SNE Overview

e Higher dimensional space:
iy = exp(—d(aci,:cj)2/20i2) Py = Djli T+ Dilj
M Y exp(—d(wi, x4)?/207) 2

e Lower dimensional space:

G — (14 [lys — y;117)
T k(U e — wil P71
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t-SNE Overview

e High dimensional:
po — . Xp(=d(@i, 25)°/207) p, — Pili TPy
M e oxp(—d(ws, xp)2/207)" TV 2
e Low dimensional:

G — (1 + [y —y;[1*) 1

1 - _
’ Zk;él(l + llye — wil|*) !
e Minimize KL Divergence:

Yx = arg manL(PHQ) = argmin Z Dij lOg qﬂ
Y Voo it Pij
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Implementation - Algorithm

e KL Divergence:

Yk = arg min K L(P||Q) = arg min Z pij log ;”
ij

Y 1,J,0F]

e Minimize:
C = KL(P||Q)

oC
By, =4 Z ng QzJ)QZJ (y YJ) A

Z = Z(H' lyr — wll*) ™

k1
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Implementation - Algorithm

« KL Divergence:

Yk = arg min K L(P||Q) = arg min Z pij log Z”
Y ij
1,3517]

e Rewrite the gradient:

oC

5 ) - attr"’Frep
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Implementation - Algorithm

e KL Divergence:

Yk = arg min K L(P||Q) = arg min Z pij log Z”
Y ij
1,3517]

e Rewrite the gradient:

oC

5 ) - attr"’Frep

e Turn it into an N-body physics simulation, we can
use Barnes-Hut method for efficient computation.

HPML @ SPAC-PAD 2018



4

IMJAGENET cHALLENGE 2017

Identify and label objects in images and videos.

Source: CIFAR-10

o o | CIEAR-10
ImageNet (1M Images) (60000 Images, 32 x 32 x 3)

Existing t-SNE implementations are slow:
ImageNet would take more than a week to
compute
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Contributions/Solution



Solution - GPU Implementation

e GPU computation of t-SNE breaks down into several steps:
o Computation of Pij

Product between Pij and Qij

Attractive forces

Building tree for Barnes-Hut Method for repulsive forces
Traversing tree for repulsive forces

Applying forces to the points in lower dimensional space

e We implement each of these kernels on the GPU
e Additionally, we add several other optimizations to further speed up the result
e We also provide python bindings for ease of use

O O O O O
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Solution - Pij Construction

Faer = Y P 2(yi— ;)
GE[L,.,N] i

e Usually, o estimated by only computing k-nearest neighbours (k-NN) of each
point (typically 32 points)
e Improve with approximate k-NN using Product Quantization

e Use FAISS library

o Entirely on GPU
o Can handle millions of points

Vectors
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Solution - Attractive Forces

e CUSPARSE sparse matrix computation:
Fottr = AN((P; © Q35)0 QY — (B © Q45)Y)

e O(kN) time with 5 operations; k = constant number of neighbours

o 2 Hadamard Products,
o 2 Matrix-Matrix Multiplications
o 1 Matrix-Matrix Subtraction

e P, is a sparse matrix with O(kN) elements, so result can be computed
efficiently with optimized cuSPARSE calls
o Pij is fixed over duration of optimization, only Qij , Y change
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Solution - Repulsive Forces

Frep i Z qZQJZ(yZ — yj) Requires r.epeated
F€M,...,N],j#i computation of q, ateach
iteration

e Barnes-Hut quad-tree construction and traversal done in parallel on GPU
o O(NlogN) time
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Results



Results - Datasets

Simulated Data with 50-dimensional points sampled from 4 isotropic
high-dimensional Gaussian distributions

MNIST consisting of 70,000 28x28 images of handwritten digits constituting a 784
dimensional image space

CIFAR-10/100 datasets both consist of a 60,000 full-color images of 10 classes in
32x32x3 resolution, giving a 3072 dimensional data space
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Results - Simulated Data
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Results - Simulated Data
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Results - Simulated Data
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Results - MNIST

t-SNE-CUDA (Ours) | 6.98 (1.0x)
MULTICORE-4 501.41 (71.8x)

BH-TSNE 1,156.70 (165.7x)
MULTICORE-1 | 1,327.07 (190.1x)
SKLeut 4.556.58 (652.8x)

0 1,000 2,000 3,000 4,000

Running Time (seconds) Visualization Results

72x - 650x Speedup
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Results - CIFAR

t-SNE-CUDA (Ours) |-5.22 (1.0x)
MULTICORE-4 | 275.46 (52.8x)
BH-TSNEI 870.71 (166.8x)
MULTICORE-1 603.46 (115.6x)
SKLearn |EG———— 3,665.44 (702.2x)

0 1,000 2,000 3,000 4,000 5,000

Running Time (seconds) Visualization Results

52x - 700x Speedup
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Results - Kernel Performance

Apply Forces -().19
FAISS Computation 15.26
R-Force Tree Building § 1.72

Compute P;; © Q;; | 3.85

Apply Forces

FAISS Computation
R-Force Tree Building
Compute Pij ® Q'ij

A-Force cuSPARSE 31.13 A-Force cuSPARSE 74.97
R-Force Computation _ 32.21 | R-Force Computation h 2_26 ‘ ‘ ‘
-0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70

500,000 points 9,000,000 points

cuSPARSE call dominate for large number of
points
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Results - Kernel Performance

e Floating-point focused kernel achieves 68.23% peak throughput, close to GPU

roof-line
e Many computations are not floating-point arithmetics that GPUs are
optimized for:

o Many Kernels are memory/offset computations and transforms
o Sparse Multiplication spends large amount of time to compute offsets for the different indices

e Kernels bounded by memory operations
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Applications and Future Work



Applications - CIFAR-10 - Raw Pixels

e Raw pixel space doesn't
exhibit structure

e Demonstrates the difficulty of
classifying object classes in
CIFAR-10 compared to

MNIST:
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Applications - CIFAR-10 - LeNet Code

e Raw pixel space doesn’t exhibit
structure

e Easier to classify object classes
in CIFAR-10 in the LeNet code
space, which demonstrates the
effectiveness of Convolutional
Neural Networks
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Applications - ImageNet Codes

e ResNet-200
demonstrates a more
continuous space for
latent codes

e Suggests a more
continuous classification
space with ResNet-200
than VGG-19

ResNet-200 Codes VGG-19 Codes

(486 s) (523 s)
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Applications - GLoVe Vectors

e Hamming Distances play a
significant role in the clusters.
(i.e. clusters are frequently
textually similar data, e.qg.
french words, dates)

e |2 metric could be
questionable choice for
comparing GLoVe vectors for
certain instances.

155 ool A

GLoVE Vectors
(2.2M Words, 300-dimensions, 573.2s)
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Future Work

e Support multi-GPU (most requested feature on GitHub)

e Explore Fast Multipole Method/Fourier Methods to
compute repulsive forces

e Explore improvements to the sparse matrix multiplication
for computing attractive forces

e Explore interactive visualization for training machine
learning models
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Questions?
https://github.com/CannyLab/tsne-cuda
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