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Motivation
— Why accelerators for NNs? Why Register-Transfer Level (RTL) model?
— Why to study resilience in NNs Accelerators?

Fault Characterization of RTL NN

— Empirically vulnerability analysis of different components of RTL NN

Fault Mitigation of RTL NN

* An efficient technigue to mitigate faults

Summary and Future Works
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Why Hardware Accelerators for NNs?
* NNs are inherently compute- and power-intensive applications.

* Hardware accelerators i.e., FPGAs and ASICs are commonly used. On the
accelerators, NN computations (matrix multiplications) can be performed
in parallel and with streaming mode.

» Register-Transfer Level (RTL) is a hardware design level can be used for
both ASICs and FPGAs. It is accurate-enough like hardware and
straightforward-enough like software. Thanks to High-Level Synthesize
(HLS) Tools.

Why Resilience in NNs?

e Continually increasing the fault rate stemming from aggressive
Undervolting, manufacturing defects, aging issues, etc, specially in nano-
scale technology nodes.

* The accuracy of NN can be significantly affected.



Motivation: Aggressive Undervolting Effects on NNs @ Conter o
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Underscaling the supply voltage below the nominal level .

* Power/Energy Efficiency: Reduces dynamic and static power; quadratically
and linearly, respectively.

* Reliability: Increases the circuit delay and in turn, causes timing faults.

1. Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman, “A Comprehensive
Evaluation of Supply Voltage Underscaling in FPGA on-chip Memories”, in Micro51, 2018.

2. Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman, “Fault Characterization
Through FPGA Undervolting”, in FPL, 2018.

3. Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman, “A Demo of FPGA Aggressive
Voltage Downscaling: Power and Reliability Tradeoffs”, in FPL, 2018.
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Overall Methodology

* Register-Transfer Level (RTL) is a
hardware design model. Hidden

Layer(s)

Output (softmax)

 Advantagesof the RTL design: Layer

* Accurate-enough (similarto the
on-silicon design)

e Straightforward-enough (similar

to the software code). _ Fault Injection unit_}—

RTL NN Design Proc-e-s:s:l-n-g
. . . weights Elements (PE)
e With the rise of High-Level 000 ‘_Il—»! Registers | @ 00 @
. J ”
. on-Chi .
Syn'Fhe5|ze _(H LS) to.ols, RTL models il or-cnie| Classifier = (JSMR
are increasingly beingcommon vl B2 | —— || | @ +
WN(1.)) < l multipliers/adders l IMR
models. . Adder Tree

Register-Transfer Level (RTL) model of the Typical NN

To build the RTL model of the NN, we use Bluespec (a cycle-accurate HLS tool).



Details of the Methodology
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Neural Network (NN) l

~ Type
Topology (number of layers)
Per Layer Size (number of neurons)
Total Number of Weights

6L (IL input, 4L hidden, IL output)
(784, 1024, 512, 256, 128, 10)= 2714 [
~1.5 million

Logarithmic Sigmoid (logsig)

Activation Function
i Major Be

nchmark ]

Name-Type
Number of Images
Number of Pixels per Image

MNIST [12]- Handwritten Digits

Hidden
Layer(s)

Output (softmax)
Layer

5
-”

Z
H

0

Training: 60000, Inference: 10000
28*28= T34

Number of Output Classes 10
Additional Benchmarks J
1. Forest [13]
2. Reuters [14] N
[ Data Representation Model ]
Type 16-bits Fixed-Point (FP)
Precision Min sign and digit per layer (Fig. 2)

~ An Example Synthesize of RTL NN on FPGA h

FPGA Platform-Chip
Operating Frequency
BRAM Usage (Total: 2060)
DSP Usage (Total: 2800)
FF Usage (Total: 303.600)
LUT Usage (Total: 607,200)

Number of PEs

VCT707-Virtex7
100Mhz

70.8%

8.6%

3.8%

49%

b4

N2

N

H
H

N

4

-

Number of Bits




Fault Model

— Where to inject fault?

* Aset of bits is fully randomly selected among all available NN data.

— Supported type of faults:

* Permanent (stuck-at-0 or stuck-at-1): stuck to O or 1 for the whole
execution cycles.

* Transient: bit-flip for a single cycle

— Statistically significant results:
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* Due to high number of possibilities to inject faults, it is more
practical to randomly-select a subset of these possibilities. But how
many?

Aggregated Average of

—

NN Inference Error (%

30%

20%

10%

0%

e ———

)
Confidence-level: 87.8% 21.3%
Std. Dev:0D.2 |~ -
12.4%
Confidence-level: 86.6% /
Std. Dev: 0.1

401 601
Number of Trial

_2.8%
2.7%
5 2.6%
2 2.5%
2 2.4%

ror (%

ce

Aggregated Average of
NN Infere

“““““ —=—transient [
———————————————————————————— 2-64%

Confidence-level: 99.6%
_______ Std. Dev: 0.001 S

1 201 401 601 801

Number of Trial
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lllustration of Methodology

index  weights
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Vulnerability of Data Types of NN @

 Three main data types of a typical NN:
— Weights or WRs (parameters of the NN, uploaded from the offline training stage)
— Inputs or IRs (images in MNIST, ...)
— InterMediate or IMRs (the internal NN data, result of multiply-add computations)

 Methodology: Injecting faults in individual data types JIR
e Select random bits to inject faults among individual data types WR_)® IMR

* Results: Inputs/Intermediate are the least/most vulnerable. IMR
* Intermediate has the longest digit component. WR_> MR

* They arein the adder part (not multiplier).

TR

100% 100% 20%
—IR —IR —IR
80% WR 80% WR 16% WR
—IMR ——IMR| 7~ T 7 — —IMR e
60% 60% , — 12% — - -
80% e N 7 8% Vi
20% Z _____ 20% ' A%
OD/IS T T T T T T T 1 OD/IS - T T T T T T T 1 OD/C') T T T T T T T 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Stuck-at-0 Stuck-at-1 Transient 10
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Vulnerability of Layers of NN

* There is an activation function between consecutive NN layers.

Input | Inner
| ayer N e t_f..‘ Z— :layers
= S v
u.“=u(b.+z':,xw,,,)
Hidden ‘\V/?
Layer(s) = Hyi = o(by +Zi""‘“ xwy)
~a
Output (softmax -
p La(yer ) 0 m 0, = smax(o( b +Z.""’"‘ xwy))

Typical Neural Network (NN)
* Methodology: Injecting faults in individual NN layers

— Select random bits to inject faults among individual NN layers

e Results:

* Inner layers (closer to the output) are relatively more vulnerable, as the result of the less
thresholding by activation functions.

100% 100% 8%
—layerQ - layerl — —layer2 —IlayerQ - layerl — —layer2| —layerQ «-«-- layerl — —layer2
80% 80%
6%
- - -layer3 ----- layerd - - -layer3 ---=
60% 60% ---layer3 ----- layer4
L T Ty ===
40% 40% e ;;;ﬁ’ﬁ'* ErT T T saaens
20% 20% 2%
096 T T T T T T T 1 0‘}6 T T T T T T T 1 096 T T T T T T T 1
o 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
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Vulnerability of Fixed-point Components @”

* Low-precision fixed-point data representation model:
— More energy-efficient than full-precision floating point

— 16-bits composed of Sign, Digit, and Fraction Components (minimum for sign and digit

and the rest for fraction)
16-bits data (IRs, WRs, and IMRs)

g :523555§5§5T§5§ ~ 7 MMHimnihit

Sign Digit Fraction

— Methodology: Injecting faults in individual components
* Select random bits to inject faults among individual data components, i.e., sign, digit, and fraction.

— Results: As expected, sign, digit, and fraction components are more vulnerable in order.

100% : 100% . 30% _
—sign ——sign —sign
80% digit 80% digitvo | | digit
e — —fraction e — —fraction| | 20% +—— = ——fracti
60% Ij . 60% /‘ Tracuon
40% / 40% l PP ———— 10% 4
B 3 ~
20% 20% Z ____________
[t )
— 0,
O{%’ T T T T T T T 1 OD/E’ T T T T T T T 1 0/6 I I I I I I I :
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
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Multiple NN Benchmarks @@=

* Validating the generality of results by more benchmarks:
— MNIST: Handwritten digit black-and-white images
* ([/Input|= 784, |Output|/= 10)

— Forest: Cartographic observations for classifying the forest cover type
([Input|[= 54, [Output|[= 8)

— Reuters: News articles for text categorization
([Input|[= 2837, [Output[= 52)

* Discussionon Results:
* Inherent error rate (without fault): MNIST (2.56%), Forest (5.6%), and Reuters (37.8%)
*  Most of the findings on MNIST are valid for new two benchmarks too, e.g., data sparsity.

e Reuters is relatively less-sparse so less-effected by stuck-at-1 faults.

100% 100% 80%
—MNIST — MNIST
80% Forest 80% 60% Forest
— —Reuters
60% 60% — —Reuters
ez T 40%
2 | [ RSP PPPPPPPEFPPP P
40% — awawn?® 40% ........
0,
20% - 20% 20%
-~
//,/_/ ______________
OD."EJ T T T T T T T T T T T T T T T 1 O‘?‘{’ T T T T T T T 1 OD-'"S T T T T T T T 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Stuck-at-0 Stuck-at-1 Transient
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Sparsity of NN Benchmarks
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* Data of studied benchmarks are sparse, i.e., more number of

‘O’ than ‘1.

— Previous papers show similar feature for other state-of-the-art
benchmarks, .e.g., ImageNet and AlexNet.

 Due to the inherent data sparsity of NNs:
e Stuck-at-1 faults are more destructive than stuck-at-0 faults.
* Good for aggressive undervoting faults, as primarily experimented.

B Number of '1' bits Number of '0' bits

10 12 14 16
Number of Bits

% of Data Range

60%

40% +-—

20% R

0%

0 010.2030405060.70.809 1
Values of Input Registers (IRs)

14
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Motivation

— Why accelerators for NNs? Why Register-Transfer Level (RTL) model?
— Why to study resilience in NNs Accelerators?

Fault Characterization of RTL NN

— Empirically vulnerability analysis of different components of RTL NN

Fault Mitigation of RTL NN

* An efficient technique to mitigate faults

Summary and Future Works
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State-of-the-art Fault Mitigation @

Studied case:

* Brandon Reagen, et. al. Minerva: Enabling Low-power, Highly-Accurate DNN Accelerators
(ISCA-2016).

Fault Detection Assumptions:

* Thereis no limit on the number of faults that can be detected.

* Information is available on which bits are affected.

* Razor shadow register is a feasible solution to achieve above goals.

Fault Mitigation Techniques: Sigib“ LTE
 Bit Masking: any bit that experiences fault is Original Data [0 Jofof1]1]0].
replaced with the sign-bit. Fault Pattern [0J0 [X]0]0]0]2%

of the word are reset to ‘0O’.
* Results: The combination of Razor with Bit Word Masking Bit Masking
) i [0TJoTJoTJoToJo] [oJoJol1T1T0]
Masking allows the NN weights to tolerate 44X [ &

more faults than Word Masking.

* Word Masking: when a fault is detected all bits 01 pata [3 IRID 1

16



An Enhanced Fault Mitigation Technique @”

* A combination of Bit Masking, Word Masking, and (if a
fault in sign-bit is detected, mask it with MSB).

* It relies on the “sparsity of NN data” and “sign-bit and MSB have same
logic”.

I 1f (reg[N-1T & reg[N-2] are fipped) reg <= 0.
& WORD MASKING

2: else begin
3: if (reg[N-1] is flipped) reg[N-1] <= reg[N-2];
A SIGN-BIT MASKING WITH MSB
4: for(i in [N-2, 0]) if (regl[i] is flipped) reg[i] <= reg[N-1]i

Minerva Word Masking

a ) /# BIT MASKING
Sign-bit Masking ~end
\ S
— Experimental Results:
e Hybrid technique is 47.3% better than Word Masking.
e Bit Masking is not efficient when sign-bit is corrupted.
__100% __ 100%
x| Minerva Bit Masking ~ — Minerva Word Masking X — MNIST
~ 80% — 80%
o = =Hybrid Technique ——Default (No Mitigation) o —Forest
o 60% o %% = Reuters
O a0% L a0% -
oy |y
2 20% 2 20% R
& B e e —— T
E 0% T T T T T T T T T T T T T T T 1 E 0% —I -\_- I—I—I -._\- T T T T T T T T T 1
0123 456 7 8 9 10111213 14 15 01 23456 7 8 9101112131415
Number of Faults Number of Faults 17
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Summary & Future Works @z .

/ Summary \ / Future Works \
* We showed that NN accelerators

are susceptible to faults, e.g.,
Undervolting faults.

* For a more comprehensive
analysis, we analyzed the
Resilience of NN accelerators in
RTL that is a close model to
hardware.

* We extracted the severity of
different components of the NN
accelerator against faults (Fault
Characterization).

* We evaluated an efficient
technique to minimize the effect
of faults on NN accuracy (Fault

 Advanced Neural Network
models like CNNs, LSTMs, etc.

e Evaluate the mitigation
technique on the silicon.

e Confirming the experimental
results by the analytical
analysis.

Klvnti,qation). / \ /
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Undervolting

Underscaling the supply voltage below the nominal level :

* Power/Energy Efficiency: Reduces quadratic ally
dynamic and linearly static power.

* Reliability: Increases the circuit delay and in turn,
causes timing faults.

Reliability

Aggressive Undervoltingis not DVFS!

23



Motivation

Contribution of FPGAs in large data centersis growing, expected to

be in 30% of datacenter servers by 2020 (Top500 news).

-

g

Our Aim:
Undervolting FPGAs below the nominal
level to achieve energy efficiency.

———— S —————

4 5 B 7 B 9 1011 12 13 14 15 18 17 18 19
Processor Number (sorted by efficency)

* (

Subsequent Study:
How is the reliability affected through

SSSSSSS

Xilinx FPGA Technologies

24



Voltage Scaling Capability in Xilinx @

ﬁ/oltage Distribution on Xilinx PIatform:\ Aaluated Xilinx PIatformR

QI - X o “T ]
'ﬁ:;ﬂf: Foowanr Cormralr 1 jCong L4 VC707 i 5, =0
FiB L e el B2 .

== DSP, LUT, ...
-
—— I SD, FMC, ... |
uz 0-3.3V 20) g | Adjustable |

s

[ e =|  Oscillator |
—{15v ] - DDR

wewes . (BTX Transiver )
W [GTX Transiver |

e
TN AAM =__ E RA MS

w10 Transiver | \
——(2C, JTAG, ... ] \KC705:power-efficientdesigy
\

Voltage Regulator
* Power Management Bus (PMBus). " oo

* Hardwired to the host. B A-V-S
- /

25

®




Experimental Methodology @@=

QDetaiIed study on FPGA BRAMs, Columns

01234567 88 10111213 14 15

which are a set of bitcells in the
row-column format. g
GExperimentaI Methodology: 3 |
1. HW: Transfer content of BRAMsto® Pmi e i
the host. |

BRAM (1024*16)

2. SW: Analyze data, and adjust Floorplan of VC70

voltage of BRAMs.
Operating frequency is set to the maximum, i.e., “~500mhz.

JTAG-Bitstream
UART- Data
V.. l +

1: Veceram = Vigins
: while(Veceram == Vigasy) begin

EETAM 100y \Z |
| 8o L AT TECHR while(numRun <= 100) begin
(16 kb) T 7/ -

e B, Transfer content of BRAMS to the host;

Analyse faulty data (rate and location);

ART

2

3

4: delay(1sec);
. !

B

FPGA Board

numBEun++;

Read to host one-by-one

L"H:f
Vecaram— = 10(mV);

SW 10: end

O .

|m
z
FPGA Chip

0
=4
D

; ' >~ 1'5 Wi 3
PMBUS
mman £
| TIPMBUS
Adapter
<

S.‘
9.
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Overall Behavior- Power & Reliability

* No observable fault -y 1
Z0.8
“' Voltage Guardband Below Vnom ‘g -
z 0.6
* Faults manifest % 0.4

Voltage Guardband: .

1- DRAM- MultipleVendors [Sigmetrics2017]:16%
2- GPU- NVidia [Micro2015]: 20%
3- CPU- Itaniumll [ISCA2013]: 12%
‘\4- FPGA- Xilinx [our work- FPL2018]: 39%

-~ 300

- 200

N
> v o =

e (per 1 Mbit)

100

.
o
.
R = ]

e
4. Exponentialtaultrate | @ & S ICCRRAM (V)
increase.
5. VC707 experiences
relatively more fault
rate.

per 1 Mbit ‘:". Fault Rat

per 1 Mbit
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Fault Characterization at CRITICAL Region @”

Fault Variability between BRAMSs

° BRAMS CIUSterlng §z(5); T £ %BRAMSs |Average Fault Ratio (%)
. o 1.8% 0.86%
USIng K'Mean 5 20% - . /] High-Vulnerable
. S 1.5% : ; 9.4% 0.24%
clustering. 2 0% 8 i L e / Mid-Vulnerable
i 88.6% 0.02%
: Low-Vulnerable

. Majority of BRAMs VC707

are low-vulnerable. T5% . %BRAMS |Average Fault Ratio (%)
. 0.9% 0.74%
51'24 /‘ High-Vulnerable
£0.9% 5.7% 0.17%
¢ ~36% Of BRAMS never|zosx - Mid-Vulnerable
' - : 93.4% 0.01%
experience faults. s B i Low-Vulnerable

KC705
* Fully non-uniform VCCBRAM-= Vcrash
fault * Different scales in y-axis * *Pattern= 18’'h3FFFF *

distribution.
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Fault Characterization at CRITICAL Region @”

Environmental Temperature

e Methodology: Adjusting environmental temperature, monitoring on-board
temperature via PMBus.

e Experimental Observation:

e At higher temperatures, fault rate is significantly reduced.

e The rate of this reduction is highly platform-dependent (VC707 > KC705).
¢ Inverse Temperature Dependency (ITD):

e For nano-scale technologies, under ultra low-voltage operations, the
circuit delay reduces at higher temperatures since supply voltage
approaches the threshold voltage.

800 - 800 -

‘|| 600 - 600 -

* y-axis: VCCBRAM (V), y-axis: fault rate (per 1Mbit) * 29



Summary & Future Works @

/ Summary \ / Future Works \

* We experimentally showed how Dynamic Vmin scaling, adapted
Xilinx FPGAs work under by frequency and temperature.
aggressive low-voltage * More advanced designs, where
operations. other components such as I/0,

* There is a conservative voltage DDR, DSP are undervolted.
guardband below the nominal * Efficient Fault Mitigation
level. Techniques.

 BRAMSs power is significantly * Profiling applications such as
reduced through Undervolting; Deep Neural Networks (DNNs),
however, reliability degrades among others.
below min safe voltage. e Extending Undervolting for

* We characterized the behavior of other commercial FPGASs such
Undervolting faults at the critical as Intel/Altera.

N AN /
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* Background

— What does Undervolting mean?
— Motivation: FPGAs Undervolting

e First Contribution: Undervolting Xilinx FPGAs

 Experimental Methodology
e Overall Power and Reliability Trade-off

e Second Contribution: Fault Characterization
* Fault Variability

* Fault Types
* Impact of the Environmental Temperature

Related Work
* Summary and Future Works
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Fault Characterization at CRITICAL Region C( (= B

Permanent ‘1’ to ‘0’ bit-flips

rate and loc

. Validated by
100 times.

\ / ‘1’ to ‘0’ bit flips

/ Permanent:
e Thereisno (f

Permanent ‘1’ to ‘O’ bit-flips can be |—
translated as stuck-at-0, ata certain | __»_
voltage, temperature, etc.

Conclusion:

\majorityo}

mutations.

0.55 0.54

VC707

#Run /

2

0 I I 1
\ 0.6 0.59 0.58 0.57 /
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Related Works of Undervolting @&

 Simulation-based: (Lack of precise information of the real

har

\_

are )

Focus of Previous Works:

(1) Coveredin our work for FPGAs
Voltage Guardband
Fault Characterization at Critical Region

Impact of Environmental Conditions

(2) Not-covered in our work on FPGAs (Future Work)

Dynamic Vmin Prediction
Fault Mitigation at Critical Region
Application Profiling

~

/
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Constraints of Xilinx FPGAs (- i

Future of FPGA Undervolting needs more advanced
voltage designs, by vendors:

{ Many FPGA platforms, e.g., Zyng are not equipped with voltah

scaling capability.

2. There is no standard about the voltage distribution among
platform components.

3. Voltage regulators are hardwired to the host through PMBus
interface.

4. In many cases, several components on the FPGA platform share
a single voltage rail.

5. Vendors set unnecessarily conservative voltage guardbands that
increase the energy.

6. There is no publicly-available circuit-level information of FPGAs.

& /
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