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Where is our work positioned

e Deep Learning
e Parallel implementations

Key takeaway

A strong scaling approach can both be faster than weak scaling
alternatives while reliably converging to a solution.



Why are we doing this?
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e These are all very good papers
e With relatively large datasets
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Incentives

* |t makes sense to study large models with large machines
= |nteresting challenges
= Has greater appeal
o |s good marketing



Natural questions

e What if you're working with smaller datasets?
e Do the techniques shared translate to them?
e Arewe, as acommunity, "overfitting" to large datasets?



e Does it even make sense to work with small datasets?
e Yes! Many applications rely on hard-to-obtain data

= Regulatory issues

= Natural resources

= Medical imaging



e |sn't Deep Learning data hungry?
= Yes,itis
e Aren't models that operate on small data fast?
= Not necessarily
= Also depends on the complexity of the model



Let's investigate one such model

e Learns the dataset characteristics
= 888 annotated CT scans
= Non-nodules (< 3 mm) and nodules (> 3mm)
e Takes a week to train on a single GPU (k80)
e Why this model?
= 3D convnets provide state of the art results
= But the datain this dataset is not enough
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We train these networks exactly the same way we train "regular" ones

e Update weights w; iteratively by
= Sampling entries x from a mini-batch /5
= Computing the loss and the derivatives for each layer
= Taking a small step towards nVI(x, w;)
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This is easily parallelizable, because x € 5 are (assumed) i.i.d.

All we need is:

e Broadcast
e AllReduce
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How we split our work is important
Many papers and frameworks suggest:
* Increase learning rate by k whenever batch size is increased by k

e Optimization will take different paths in the loss landscape
= But can only follow the same path if k# is used
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Obviously, the term a directs optimization

e When a = k#: linear scaling rule

# Horovod: adjust learning rate based on number
# of GPUs.
opt = keras.optimizers.Adadelta (1.0 * hvd.size())



e Whena — kn: linear scaling rule with warmup

# Horovod: using "1r = 1.0 * hvd.size() from the very
# beginning leads to worse final accuracy
hvd.callbacks.LearningRateWarmupCallback (warmup epochs=5, verbose=1),



What we do is keep | B| fixed and a = #:

e |f we have two workers, each gets half the size of the original minibatch
e |[f we have three, each gets one third
e Andsoon..



Since batch size is an integer, this limits the number of parallel workers to | 3|
This gives us the same convergence properties of the single worker case

Our models run faster, since work is divided between workers



e Qur approach: strong scaling
= Work per iteration is the same no matter number of workers
e Approaches inthe literature: weak scaling
= Each worker performs the same amount of work
= Per iteration, data processed increases with number of workers



Methodology

e We trained a generative network
with{1, 2, 4, 8, 16, 32} workers
on a dataset of 888 annotated CT scans with coordinates of 2100+ nodules > 3mm
until it reached a given loss (MSLE)
with different scaling rules
= Strongscaling
= Weak scaling
= Weak scaling with linear scaling rule
= Weak scaling with linear scaling rule + warmup



Why time to loss?



Results



Strong scaling has better performance
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Behavior of the loss with weak scaling
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Behavior of the loss with strong scaling
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Progress of the model

(a) epoch =0 epoch=16 epoch=128 epoch=1024 epoch =8192
loss = 4.0x102 loss = 2.8x1072 loss = 2.3x1073 loss = 3.7x107°

(b) epoch =0 epoch=16 epoch =64 epoch =128 epoch = 11600
loss = 2.8x10°2 loss = 1.4x1072 loss = 6.0x10"3 loss = 3.6x10*

epoch =0 epoch =32 epoch=512 epoch = 65536
loss = 4.7x10°3 loss = 7.5x104 loss = 1.4x10#
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Conclusions

Insights obtained in large datasets do not necessarily translate to smaller ones
Models with modest data still can take a long time to train
Strong scaling outperforms weak scaling in the application tested
We expect these findings to generalize to other applications
= More experimentation is needed



Thank you! Questions?
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