Accelerating deep neural network training for action recognition on a cluster of GPUs

Guojing Cong¹, **Giacomo Domeniconi**¹, Joshua Shapiro¹, Fan Zhou², Barry Chen³ ¹IBM TJ Watson Research Center, NY ²Georgia Tech Atlanta, GA ³National Laboratory Livermore, CA

Outline

- Introduction of Action Recognition in Videos
- Two-Streams CNNs for Action Recognition
- Adaptive-batchsize model averaging with sparse communication
 - The AAVG algorithm
 - Dynamically adapting batchsizes
 - Customizing the optimizer for AAVG
 - Transfer learning for training the flow stream
- Conclusions

Action Recognition in Videos

Action Recognition in Videos

- Input: video
- Output: the action label
- Why perform action recognition?
 - Surveillance footage
 - Automatic video organization / tagging
 - Search-by-video
 - • • •
- What is an action?
 - Action: walking, pointing, putting, etc.
 - Activity: talking on the phone, drinking tea, etc.
 - Event: a soccer game, a birthday party, etc.

Crowd Behavior/Event Analysis

credit: Bingbing

Level of semantics

Why Action Recognition is challenging

- Different scales
 - People may appear at different scales in different videos, yet perform the same action
- Movement of the camera
 - The camera may be a handheld camera, and the person holding it can cause it to shake.
- Occlusions
 - Action may not be fully visible
- Action variation
 - Different people perform different actions in different ways
- Action Recognition task is both very computing and memory intensive
 - The required neural networks to accomplish it are huge
 - Up to 100 or 200 layers
 - Up to 10 or 100M parameters
 - The size of the datasets and features is big
 - Up to 100 TB

CNN for Action Recognition

Two-Streams CNNs for Action Recognition

- Extend deep Convolution Networks to action recognition in video
- The current state-of-art approaches make use of two streams of CNNs
 - Proposed by Simonyan and Zisserman¹ in 2014
 - Inspired by the human visual cortex
 - Using 2D convolutions (images), or
 - Using 3D convolutions (streams of images, the third dimension is the time)
- Two separated recognition streams:
 - Spatial (or RGB) stream- image recognition CNN
 - Temporal (or flow) stream motion recognition CNN
 - Based on Optical Flow

¹Simonyan K and Zisserman A. Two-stream convolutional networks for action recognition in videos. CoRR, 2014

Optical flow

- Optical flow refers to the visible motion of an object in an image, and the **apparent 'flow' of pixels** in an image
- It is the result of 3D motion being projected on a 2D image plane
- The optical flow can be used as an estimation of object velocity and position of object in the next frame
- We used the OpenCV's TV-L1 estimation

(a),(b): a pair of consecutive video frames with the area around a moving hand. (c): a close-up of dense optical flow in the outlined area;

(d): horizontal component (higher intensity corresponds to positive values, lower intensity to negative values).

(e): vertical component.

Our two-streams 2 dimensional CNNs

- We follow the implementation of Simonyan and Zisserman¹
- RGB stream: 1 random frame from an input video is sampled and fed into a CNN
- Flow stream: 10 consecutive flows are randomly sampled and fed to another CNN
- Both CNNs in are based on ResNet152
 - The weights in ResNet152 are pretrained on the ImageNet dataset
- Simple averaging is used to combine the predictions from the two streams
- The two streams are trained separately

Benchmark datasets and baseline results

- Our primary dataset is UCF-101
 - ~13,000 video in 101 action categories
 - ~9500 training and ~3700 validation videos
- Baseline single-GPU validation accuracy:
 - RGB stream = **85.04%**
 - Flow stream = **84.5%**
 - Two-streams combined = 91.3%
- Training time on a single GPU
 - RGB stream takes around 12 hours
 - Flow stream takes more than two days
- Experiments performed on 4 IBM Minsky nodes
 - Each node has 2 Power8 CPUs with 10 cores each and 4 NVIDIA Tesla P100 GPUs
 - The interconnect between the nodes is Infiniband
- We also show results on the HMDB-51 dataset
 - ~6,800 video in 51 action categories

Adaptive-batchsize model averaging with sparse communication (AAVG)

AAVG

Algorithm 1 AAVG ($\mathcal{T}, \mathcal{V}, K, B, m, \gamma, P, N, b_1, b_2$) 1: initialize $\widetilde{\mathbf{w}}_1$ 2: $a^* \leftarrow 0, B_0 \leftarrow B, \gamma_0 \leftarrow \gamma$ 3: for n = 1, ..., N do $B_n \leftarrow B_{n-1}, \gamma_n \leftarrow \gamma_{n-1}$ for $j = 1, \ldots, P$ in parallel do 5: set $\mathbf{w}_n^j = \widetilde{\mathbf{w}}_n$ 6: for k = 1, ..., K do 7: randomly sample a mini-batch of size B_n from \mathcal{T} 8: $\mathbf{w}_{n+k}^{j} \leftarrow \mathbf{w}_{n+k-1}^{j} - \frac{\gamma_{n}}{B_{n}} \sum_{i=1}^{B_{n}} \nabla F(\mathbf{w}_{n+k-1}^{j}; \xi_{k,s}^{j})$ 9: end for 10: end for 11: $\widetilde{\mathbf{w}}_{n+1} \leftarrow \frac{1}{P} \sum_{i=1}^{P} \mathbf{w}_{n+K}^{j}$ 12: if n%m = 0 then 13: $a \leftarrow evaluate(\widetilde{\mathbf{w}}_{n+1}, \mathcal{V})$ 14: if $a < a^* \cdot b_1$ then 15: $B_n \leftarrow B_n \cdot b_2$ 16: end if 17: if $a > a^*$ then 18: $a^* \leftarrow a$ 19: end if 20: end if 21: 22: end for

- Adaptive-batchsize model averaging with sparse communication (AAVG)
- Input parameters:
 - the training dataset ${\mathcal T}$
 - the validation dataset $\ensuremath{\mathcal{V}}$
 - the averaging interval K
 - the initial batchsize B
 - the validation interval *m*
 - the initial learning rate γ
 - the number of learners P
 - the number of training steps N
 - parameters b₁ and b₂ that are used to adapt batchsize

AAVG

Algorithm 1 AAVG ($\mathcal{T}, \mathcal{V}, K, B, m, \gamma, P, N, b_1, b_2$) 1: initialize $\widetilde{\mathbf{w}}_1$ 2: $a^* \leftarrow 0, B_0 \leftarrow B, \gamma_0 \leftarrow \gamma$ 3: for n = 1, ..., N do $B_n \leftarrow B_{n-1}, \gamma_n \leftarrow \gamma_{n-1}$ for $j = 1, \ldots, P$ in parallel do 5: set $\mathbf{w}_n^j = \widetilde{\mathbf{w}}_n$ 6: for k = 1, ..., K do 7: randomly sample a mini-batch of size B_n from \mathcal{T} 8: $\mathbf{w}_{n+k}^{j} \leftarrow \mathbf{w}_{n+k-1}^{j} - \frac{\gamma_{n}}{B_{n}} \sum_{i=1}^{B_{n}} \nabla F(\mathbf{w}_{n+k-1}^{j}; \xi_{k,s}^{j})$ 9: end for 10: end for 11: $\widetilde{\mathbf{w}}_{n+1} \leftarrow \frac{1}{P} \sum_{j=1}^{P} \mathbf{w}_{n+K}^{j}$ 12: if n%m = 0 then 13: $a \leftarrow evaluate(\widetilde{\mathbf{w}}_{n+1}, \mathcal{V})$ 14: if $a < a^* \cdot b_1$ then 15: $B_n \leftarrow B_n \cdot b_2$ 16: end if 17: if $a > a^*$ then 18: $a^* \leftarrow a$ 19: end if 20: end if 21: 22: end for

- *P* learners run stochastic gradient descent concurrently (lines 4 to 11) and average their parameters every *K* steps (line 12)
- When K=1, AAVG with constant batchsize is equivalent to hard-sync parallelization of SGD
 - Its convergence behavior is exactly the same as
 SGD with batchsize = PB
- Every *m* steps, the algorithm evaluates validation accuracy *a* on the validation dataset V and adapts batchsize according to the validation result (lines 13 to 21)

What is the best K?

• The right K plays a critical role

- Too small K incurs high overhead due to frequent communication
- Too high *K* incurs in slow or even non-convergence
- Intuitively, frequent averaging reduces the variance more frequently, thus one may think the smaller K the better.
- Surprisingly, it is not!

Results varying K

 We experiment with different K values and observe their impact on the validation accuracy

- High K provides good results and prevents communication overhead
- AAVG with K=-1 achieves near linear speedup
 - Ignoring I/O overhead (determined by the storage type and file system)

Dynamically Adapting Batchsizes

- The *adam* optimizer adaptively scales the learning rate for each individual gradient component
- Why not to consider the batchsize?
- Idea:
 - \rightarrow higher B_n for higher n
- Gradient estimates from small batches are sufficient at the beginning for rapid progress
- SGD with increasing batchsize should eventually start to resemble deterministic algorithms for strongly convex problems via larger B_n batch sampling

Dynamically Adapting Batchsizes

- AAVG increases the batchsize by a factor of b₂ whenever the validation accuracy does not improve by a margin of b₁
- In our implementation, we simply use $b_1=1$ and $b_2=2$
- We keep the maximum batchsize to 576

17

Customizing the optimizer for AAVG

- Adam optimizer uses two quantities to adapt the learning rate:
 - *m*, the weighted average of historical gradients
 - *v*, the weighted average of the historical squared gradients.
- Model averaging disrupts adam's internal state
- We adjust *m* and *v* in the *adam* optimizer for AAVG.

2: set
$$m = \sum_{j}^{P} m_{j}$$
, $v = \sum_{j}^{P} v_{j}$
3: set $m^{b} = \sum_{j}^{P} m_{j}^{b}$, set $z = \sum_{j}^{P} z_{j}$
4: for $j = 1, \dots, P$ in parallel do
5: $m_{j} \leftarrow m/P, v_{j} \leftarrow v/P$
6: $m_{j}^{b} \leftarrow m^{b}/P, v_{j}^{b} \leftarrow z/P - (m_{j}^{b})^{2}$
7: end for

Transfer Learning in the Flow Stream

- Training the flow stream is significantly slower due to:
 - The pretrained ResNet model was trained with RGB images not flow inputs
 - The input layer has significantly more channels and thus more weights to train
- Proposal: Instead start the training with weights pre-trained on ImageNet, use the model trained for the RGB stream

- Similar highest validation accuracies
- Achieved faster with transfer learning (epoch 150 vs 185)

Results Recap

	UCF101			HMDB51		
	RGB	Flow	2stream	RGB	Flow	2stream
$AAVG_1$	81.6	84.1	88.3	-	-	-
$AAVG_2$	83.7	84.5	89.7	-	-	-
$AAVG_3$	85.6	84.7	91.4	61.4	55.9	67.0
$AAVG_4$	85.6	84.7	93.04	61.4	56.0	67.9

- AAVG₁ implements AAVG with constant batchsize
- AAVG₂ implements AAVG with adaptive batchsize
- AAVG₃ implements AAVG with both adaptive batchsize and tuned *adam* optimizer
- AAVG₄ is AAVG₃ with weights transferring from the RGB stream to the flow stream
- The RGB stream training on UCF101 with 16 GPUs takes 61 minutes using AAVG with customized *adam*, while the base-line single-GPU SGD implementation takes 2067 minutes to train to achieve similar validation accuracy

Conclusions

- AAVG is an efficient distributed training algorithm with adaptive batchsize that explicitly manages the impact of model averaging frequency on both convergence and communication overhead
- AAVG with very sparse synchronization (i.e. once per epoch), shows very good convergence behavior
 - As a happy coincidence, the communication overhead is very low
- AAVG shows up to super-linear speedups on 16 GPUs over the base-line single-GPU SGD implementation, while improving accuracy
- In our future work, we plan to evaluate our algorithm on larger datasets and on 3-Dimensional CNNs

Thank you!