
Accelerating deep neural network training for
action recognition on a cluster of GPUs

Guojing Cong1, Giacomo Domeniconi1, Joshua Shapiro1, Fan Zhou2,Barry Chen3

1IBM TJ Watson Research Center, NY
2Georgia Tech Atlanta, GA

3National Laboratory Livermore, CA

Outline

• Introduction of Action Recognition in Videos
• Two-Streams CNNs for Action Recognition
• Adaptive-batchsize model averaging with sparse communication
• The AAVG algorithm
• Dynamically adapting batchsizes
• Customizing the optimizer for AAVG
• Transfer learning for training the flow stream

• Conclusions

2

Action Recognition in Videos

3

Action Recognition in Videos

• Input: video
• Output: the action label
• Why perform action recognition?
• Surveillance footage
• Automatic video organization / tagging
• Search-by-video
• ….

• What is an action?
• Action: walking, pointing, putting, etc.
• Activity: talking on the phone, drinking tea, etc.
• Event: a soccer game, a birthday party, etc.

4

Level of semantics

Why Action Recognition is challenging

• Different scales
• People may appear at different scales in different videos, yet perform the same action

• Movement of the camera
• The camera may be a handheld camera, and the person holding it can cause it to shake.

• Occlusions
• Action may not be fully visible

• Action variation
• Different people perform different actions in different ways

• Action Recognition task is both very computing and memory intensive
• The required neural networks to accomplish it are huge

• Up to 100 or 200 layers
• Up to 10 or 100M parameters

• The size of the datasets and features is big
• Up to 100 TB

5

CNN for Action Recognition

6

Two-Streams CNNs for Action Recognition

• Extend deep Convolution Networks to action recognition in video
• The current state-of-art approaches make use of two streams of CNNs

• Proposed by Simonyan and Zisserman1 in 2014
• Inspired by the human visual cortex
• Using 2D convolutions (images), or
• Using 3D convolutions (streams of images, the third dimension is the time)

• Two separated recognition streams:
• Spatial (or RGB) stream– image recognition CNN
• Temporal (or flow) stream – motion recognition CNN

• Based on Optical Flow

1Simonyan K and Zisserman A. Two-stream convolutional networks for action recognition in videos. CoRR, 2014

7

Optical flow
• Optical flow refers to the visible motion of an object in an image,

and the apparent 'flow' of pixels in an image
• It is the result of 3D motion being projected on a 2D image plane
• The optical flow can be used as an estimation of object velocity and

position of object in the next frame
• We used the OpenCV’s TV-L1 estimation

8

(a),(b): a pair of consecutive video frames with the area around a moving hand.
(c): a close-up of dense optical flow in the outlined area;
(d): horizontal component (higher intensity corresponds to positive values, lower
intensity to negative values).
(e): vertical component.

The Temporal stream ConvNet

• Optical	flow
• Input of	the ConvNetmodel	is	stacking	optical	flow	displacement	
fields	between	several	consecutive	frames
• This input describes	the	motion	between	video	frames

Our two-streams 2 dimensional CNNs

9

II. ACTION RECOGNITION METHODS

A. Two-Stream Approach

The baseline two-stream training for action recognition is
illustrated in figure 1. Each stream is trained separately and
combined only for validation. The RGB stream takes in a
random frame from an input video and feeds it to a CNN
followed by a fully-connected layer for classification. The flow
stream takes in 10 consecutive optical flows randomly sampled
from an input video and feeds them to a CNN followed by
a fully-connected layer for classification. The optical flows
are precomputed using the TVL1 algorithm and are stacked
in their channels when fed to the flow stream. Essentially
the flow stream takes in a 20 channel image. During training
validation accuracy for each stream is computed by averaging
the prediction of 5 data samples on a single video. For final
validation, 25 samples are used instead of 5.

In our study we base our CNN on ResNet152 with slight
modifications to the first and last layers. The model is
pretrained on ImageNet. For both streams the last layer is
modified for the proper number of output classes given our
dataset (101 for UCF101 and 51 for HMDB51). For the flow
stream, the input layer is changed to take in a 20 channel
image instead of the original 3 channels. Simple averaging is
initially used to combine the predictions from the two streams.

We implement a data augmentation scheme described in
HERE. The video frames are scaled to 256 x 340. During train-
ing, a multi-scaled crop (random crop of dimension randomly
chosen by 256, 224, 192, 168, followed by a re-size of the
cropped region to 224 x 224) and a random horizontal flip are
applied to the input. During validation, a center crop of 224 x
224 without scaling is applied to the input. The 5 frames used
for validation on a single video are evenly distributed amongst
the video. For training the frames are sampled at random.

CNN

CNN

FC

Combination

Input Video

Optical Flows

Single Frame

FC

Prediction

Fig. 1: Two-stream architecture

B. 3D Convolution Approach

We compare our results against the 3D Convolutional Incep-
tion network called I3D defined here. The idea is that adding
a third dimension to the convolutions will allow the model
to learn the temporal information in addition to the spatial
information without relying on training two models. It is an
elegant idea that has promise. I3D is an inflated Inception
V1 network with slight changes in the architecture to make

it more suited to three dimensional data. The Inception V1
model is pretrained on ImageNet and the pretrained weights
are boostrapped to 3D convolutions. 64 consecutive frames
are sampled from a video and fed into the network during
training, and the entire video is fed in during validation. I3D
uses a similar data augmentation scheme described in the Two-
Stream Approach, but normalizes pixel values between -1 and
1 instead of 0 and 1. A depiction of I3D can be seen in figure
2.

I3D

Input Video Prediction

Fig. 2: I3D architecture

A two stream version of I3D yields better results, and acts as
the state-of-the-art bar we measure against. Its architecture is
the same as the two-stream approach in figure 1, but the CNN
is I3D instead of ResNet152. During training the input is 64
consecutive frames and flows for each stream respectively, and
the whole video is used in validation. The outputs of the two
streams are averaged for a final prediction.

C. Baseline Results

Table I shows the baseline results of the individual and two-
stream architectures with both 2D and 3D convolutions. The
table shows the accuracy, number of parameters, and flops
of the models for UCF101 and HMDB51. The two-stream 2D
model was trained on a single GPU with SGD as its optimizer.
It has an initial learning rate of 0.01 which is reduced by a
factor of 2 every 50 epochs for a total of 500 epochs. Due to
time constraints 2D convolution results are only available for
UCF101. I3D uses SGD with parallel synchronization on 64
gpus with momentum set to 0.9. It should also be noted that
I3D is running on TensorFlow while our model is developed
on PyTorch. The rest of this paper is devoted to modifying the
two-stream 2D approach to exceed the two-stream I3D results.

TABLE I: Baseline Performance of Two-Stream Approaches.
Accuracy in format of UCF101/HMDB51

Model Accuracy Parameters Time/Epoch
RGB 2D Convolution 85.0/? 0 0
Flow 2D Convolution 84.5/? 0 0
Two Stream 2D Convolution 91.3/? 0 0
RGB I3D 84.5/49.8 0 0
Flow I3D 90.6/61.9 0 0
Two Stream I3D 93.4/66.4 0 0

2

• We follow the implementation of
Simonyan and Zisserman1

• RGB stream: 1 random frame from an input
video is sampled and fed into a CNN
• Flow stream: 10 consecutive flows are

randomly sampled and fed to another CNN
• Both CNNs in are based on ResNet152

• The weights in ResNet152 are pretrained on
the ImageNet dataset

• Simple averaging is used to combine the
predictions from the two streams
• The two streams are trained separately

Benchmark datasets and baseline results
• Our primary dataset is UCF-101

• ~13,000 video in 101 action categories
• ~9500 training and ~3700 validation videos

• Baseline single-GPU validation accuracy:
• RGB stream = 85.04%
• Flow stream = 84.5%
• Two-streams combined = 91.3%

• Training time on a single GPU
• RGB stream takes around 12 hours
• Flow stream takes more than two days

• Experiments performed on 4 IBM Minsky nodes
• Each node has 2 Power8 CPUs with 10 cores each and 4 NVIDIA Tesla P100 GPUs
• The interconnect between the nodes is Infiniband

• We also show results on the HMDB-51 dataset
• ~6,800 video in 51 action categories

10

Adaptive-batchsize model
averaging with sparse
communication (AAVG)

11

AAVG
• Adaptive-batchsize model averaging

with sparse communication (AAVG)
• Input parameters:

• the training dataset !
• the validation dataset "
• the averaging interval K
• the initial batchsize B
• the validation interval m
• the initial learning rate #
• the number of learners P
• the number of training steps N
• parameters b1 and b2 that are used to

adapt batchsize

12

AAVG
• P learners run stochastic gradient descent

concurrently (lines 4 to 11) and average their
parameters every K steps (line 12)
• When K=1, AAVG with constant batchsize is

equivalent to hard-sync parallelization of
SGD
• Its convergence behavior is exactly the same as

SGD with batchsize = PB
• Every m steps, the algorithm evaluates

validation accuracy a on the validation
dataset ! and adapts batchsize according to
the validation result (lines 13 to 21)

13

What is the best K?

• The right K plays a critical role
• Too small K incurs high overhead due to frequent communication
• Too high K incurs in slow or even non-convergence

• Intuitively, frequent averaging reduces the variance more frequently,
thus one may think the smaller K the better.
• Surprisingly, it is not!

14

Results varying K

• We experiment with different K values and observe their impact on the validation
accuracy

• High K provides good results and prevents communication overhead
• AAVG with K=-1 achieves near linear speedup

• Ignoring I/O overhead (determined by the storage type and file system) 15

Dynamically Adapting Batchsizes

• The adam optimizer adaptively scales the learning rate for each
individual gradient component
• Why not to consider the batchsize?
• Idea:

à higher Bn for higher n
• Gradient estimates from small batches are sufficient at the beginning

for rapid progress
• SGD with increasing batchsize should eventually start to resemble

deterministic algorithms for strongly convex problems via larger Bn
batch sampling

16

Dynamically Adapting Batchsizes

• AAVG increases the batchsize by a factor of b2 whenever the validation accuracy
does not improve by a margin of b1
• In our implementation, we simply use b1=1 and b2=2
• We keep the maximum batchsize to 576

17

Customizing the optimizer for AAVG

18

• Adam optimizer uses two quantities to adapt the
learning rate:
• m, the weighted average of historical gradients
• v, the weighted average of the historical squared

gradients.
• Model averaging disrupts adam’s internal state
• We adjust m and v in the adam optimizer for

AAVG.

Transfer Learning in the Flow Stream

• Training the flow stream is significantly slower due to:
• The pretrained ResNet model was trained with RGB images not flow inputs
• The input layer has significantly more channels and thus more weights to train

• Proposal: Instead start the training with weights pre-trained on ImageNet, use
the model trained for the RGB stream

19

• Similar highest validation accuracies
• Achieved faster with transfer learning

(epoch 150 vs 185)

Results Recap

• AAVG1 implements AAVG with constant batchsize

• AAVG2 implements AAVG with adaptive batchsize

• AAVG3 implements AAVG with both adaptive batchsize and tuned adam optimizer

• AAVG4 is AAVG3 with weights transferring from the RGB stream to the flow stream

• The RGB stream training on UCF101 with 16 GPUs takes 61 minutes using AAVG

with customized adam, while the base-line single-GPU SGD implementation takes

2067 minutes to train to achieve similar validation accuracy
20

Conclusions

• AAVG is an efficient distributed training algorithm with adaptive batchsize
that explicitly manages the impact of model averaging frequency on both
convergence and communication overhead
• AAVG with very sparse synchronization (i.e. once per epoch), shows very

good convergence behavior
• As a happy coincidence, the communication overhead is very low

• AAVG shows up to super-linear speedups on 16 GPUs over the base-line
single-GPU SGD implementation, while improving accuracy

• In our future work, we plan to evaluate our algorithm on larger datasets
and on 3-Dimensional CNNs

21

Thank you!

